Several existence theorems of nonlinear m-point boundary value problem for p-Laplacian dynamic equations on time scales
نویسندگان
چکیده
منابع مشابه
Triple positive solutions of $m$-point boundary value problem on time scales with $p$-Laplacian
In this paper, we consider the multipoint boundary value problem for one-dimensional $p$-Laplacian dynamic equation on time scales. We prove the existence at least three positive solutions of the boundary value problem by using the Avery and Peterson fixed point theorem. The interesting point is that the non-linear term $f$ involves a first-order derivative explicitly. Our results ...
متن کاملPositive Solutions of Nonlinear M-point Boundary-value Problem for P-laplacian Dynamic Equations on Time Scales
In this paper, we study the existence of positive solutions to nonlinear m-point boundary-value problems for a p-Laplacian dynamic equation on time scales. We use fixed point theorems in cones and obtain criteria that generalize and improve known results.
متن کاملExistence of positive solutions for a second-order p-Laplacian impulsive boundary value problem on time scales
In this paper, we investigate the existence of positive solutions for a second-order multipoint p-Laplacian impulsive boundary value problem on time scales. Using a new fixed point theorem in a cone, sufficient conditions for the existence of at least three positive solutions are established. An illustrative example is also presented.
متن کاملExistence of Solutions for Nonlinear Four-Point p-Laplacian Boundary Value Problems on Time Scales
Let T be any time scale such that 0, 1 be subset of T. The concept of dynamic equations on time scales can build bridges between differential and difference equations. This concept not only gives us unified approach to study the boundary value problems on discrete intervals with uniform step size and real intervals but also gives an extended approach to study on discrete case with non uniform s...
متن کاملPositive Solutions for Third-Order Nonlinear p-Laplacian m-Point Boundary Value Problems on Time Scales
We study the following third-order p-Laplacian m-point boundary value problems on time scales: φp uΔ∇ ∇ a t f t, u t 0, t ∈ 0, T T, βu 0 − γuΔ 0 0, u T ∑m−2 i 1 aiu ξi , φp u Δ∇ 0 ∑m−2 i 1 biφp u Δ∇ ξi , where φp s is p-Laplacian operator, that is, φp s |s|p−2s, p > 1, φ−1 p φq, 1/p 1/q 1, 0 < ξ1 < · · · < ξm−2 < ρ T . We obtain the existence of positive solutions by using fixed-point theorem i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2008
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2007.09.029